Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides.

Identifieur interne : 000377 ( Main/Exploration ); précédent : 000376; suivant : 000378

Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides.

Auteurs : Zanetta Chang [États-Unis] ; R Blake Billmyre [États-Unis] ; Soo Chan Lee [États-Unis] ; Joseph Heitman [États-Unis]

Source :

RBID : pubmed:30742617

Descripteurs français

English descriptors

Abstract

Mucormycosis-an emergent, deadly fungal infection-is difficult to treat, in part because the causative species demonstrate broad clinical antifungal resistance. However, the mechanisms underlying drug resistance in these infections remain poorly understood. Our previous work demonstrated that one major agent of mucormycosis, Mucor circinelloides, can develop resistance to the antifungal agents FK506 and rapamycin through a novel, transient RNA interference-dependent mechanism known as epimutation. Epimutations silence the drug target gene and are selected by drug exposure; the target gene is re-expressed and sensitivity is restored following passage without drug. This silencing process involves generation of small RNA (sRNA) against the target gene via core RNAi pathway proteins. To further elucidate the role of epimutation in the broad antifungal resistance of Mucor, epimutants were isolated that confer resistance to another antifungal agent, 5-fluoroorotic acid (5-FOA). We identified epimutant strains that exhibit resistance to 5-FOA without mutations in PyrF or PyrG, enzymes which convert 5-FOA into the active toxic form. Using sRNA hybridization as well as sRNA library analysis, we demonstrate that these epimutants harbor sRNA against either pyrF or pyrG, and further show that this sRNA is lost after reversion to drug sensitivity. We conclude that epimutation is a mechanism capable of targeting multiple genes, enabling Mucor to develop resistance to a variety of antifungal agents. Elucidation of the role of RNAi in epimutation affords a fuller understanding of mucormycosis. Furthermore, it improves our understanding of fungal pathogenesis and adaptation to stresses, including the evolution of drug resistance.

DOI: 10.1371/journal.pgen.1007957
PubMed: 30742617
PubMed Central: PMC6386414


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides.</title>
<author>
<name sortKey="Chang, Zanetta" sort="Chang, Zanetta" uniqKey="Chang Z" first="Zanetta" last="Chang">Zanetta Chang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Billmyre, R Blake" sort="Billmyre, R Blake" uniqKey="Billmyre R" first="R Blake" last="Billmyre">R Blake Billmyre</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Stowers Institute for Medical Research, Kansas City, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Soo Chan" sort="Lee, Soo Chan" uniqKey="Lee S" first="Soo Chan" last="Lee">Soo Chan Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas, San Antonio, San Antonio, Texas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas, San Antonio, San Antonio, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30742617</idno>
<idno type="pmid">30742617</idno>
<idno type="doi">10.1371/journal.pgen.1007957</idno>
<idno type="pmc">PMC6386414</idno>
<idno type="wicri:Area/Main/Corpus">000345</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000345</idno>
<idno type="wicri:Area/Main/Curation">000345</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000345</idno>
<idno type="wicri:Area/Main/Exploration">000345</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides.</title>
<author>
<name sortKey="Chang, Zanetta" sort="Chang, Zanetta" uniqKey="Chang Z" first="Zanetta" last="Chang">Zanetta Chang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Billmyre, R Blake" sort="Billmyre, R Blake" uniqKey="Billmyre R" first="R Blake" last="Billmyre">R Blake Billmyre</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Stowers Institute for Medical Research, Kansas City, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Soo Chan" sort="Lee, Soo Chan" uniqKey="Lee S" first="Soo Chan" last="Lee">Soo Chan Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas, San Antonio, San Antonio, Texas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas, San Antonio, San Antonio, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Drug Resistance, Multiple, Fungal (genetics)</term>
<term>Epigenesis, Genetic (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mucor (drug effects)</term>
<term>Mucor (genetics)</term>
<term>Mucor (pathogenicity)</term>
<term>Mucormycosis (drug therapy)</term>
<term>Mucormycosis (microbiology)</term>
<term>Mutation (MeSH)</term>
<term>Orotate Phosphoribosyltransferase (genetics)</term>
<term>Orotic Acid (analogs & derivatives)</term>
<term>Orotic Acid (pharmacology)</term>
<term>Orotidine-5'-Phosphate Decarboxylase (genetics)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Fungal (genetics)</term>
<term>Sirolimus (pharmacology)</term>
<term>Tacrolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN fongique (génétique)</term>
<term>Acide orotique (analogues et dérivés)</term>
<term>Acide orotique (pharmacologie)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Mucor (effets des médicaments et des substances chimiques)</term>
<term>Mucor (génétique)</term>
<term>Mucor (pathogénicité)</term>
<term>Mucormycose (microbiologie)</term>
<term>Mucormycose (traitement médicamenteux)</term>
<term>Multirésistance des champignons aux médicaments (génétique)</term>
<term>Mutation (MeSH)</term>
<term>Orotate phosphoribosyltransferase (génétique)</term>
<term>Orotine 5'-phosphate decarboxylase (génétique)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Tacrolimus (pharmacologie)</term>
<term>Épigenèse génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Orotic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Orotate Phosphoribosyltransferase</term>
<term>Orotidine-5'-Phosphate Decarboxylase</term>
<term>RNA, Fungal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Orotic Acid</term>
<term>Sirolimus</term>
<term>Tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acide orotique</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mucor</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Mucormycosis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mucor</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drug Resistance, Multiple, Fungal</term>
<term>Mucor</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN fongique</term>
<term>Mucor</term>
<term>Multirésistance des champignons aux médicaments</term>
<term>Orotate phosphoribosyltransferase</term>
<term>Orotine 5'-phosphate decarboxylase</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Mucormycose</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Mucormycosis</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Mucor</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Mucor</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide orotique</term>
<term>Antifongiques</term>
<term>Sirolimus</term>
<term>Tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Mucormycose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Epigenesis, Genetic</term>
<term>Genes, Fungal</term>
<term>Humans</term>
<term>Mutation</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes fongiques</term>
<term>Humains</term>
<term>Interférence par ARN</term>
<term>Mutation</term>
<term>Épigenèse génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mucormycosis-an emergent, deadly fungal infection-is difficult to treat, in part because the causative species demonstrate broad clinical antifungal resistance. However, the mechanisms underlying drug resistance in these infections remain poorly understood. Our previous work demonstrated that one major agent of mucormycosis, Mucor circinelloides, can develop resistance to the antifungal agents FK506 and rapamycin through a novel, transient RNA interference-dependent mechanism known as epimutation. Epimutations silence the drug target gene and are selected by drug exposure; the target gene is re-expressed and sensitivity is restored following passage without drug. This silencing process involves generation of small RNA (sRNA) against the target gene via core RNAi pathway proteins. To further elucidate the role of epimutation in the broad antifungal resistance of Mucor, epimutants were isolated that confer resistance to another antifungal agent, 5-fluoroorotic acid (5-FOA). We identified epimutant strains that exhibit resistance to 5-FOA without mutations in PyrF or PyrG, enzymes which convert 5-FOA into the active toxic form. Using sRNA hybridization as well as sRNA library analysis, we demonstrate that these epimutants harbor sRNA against either pyrF or pyrG, and further show that this sRNA is lost after reversion to drug sensitivity. We conclude that epimutation is a mechanism capable of targeting multiple genes, enabling Mucor to develop resistance to a variety of antifungal agents. Elucidation of the role of RNAi in epimutation affords a fuller understanding of mucormycosis. Furthermore, it improves our understanding of fungal pathogenesis and adaptation to stresses, including the evolution of drug resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30742617</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides.</ArticleTitle>
<Pagination>
<MedlinePgn>e1007957</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1007957</ELocationID>
<Abstract>
<AbstractText>Mucormycosis-an emergent, deadly fungal infection-is difficult to treat, in part because the causative species demonstrate broad clinical antifungal resistance. However, the mechanisms underlying drug resistance in these infections remain poorly understood. Our previous work demonstrated that one major agent of mucormycosis, Mucor circinelloides, can develop resistance to the antifungal agents FK506 and rapamycin through a novel, transient RNA interference-dependent mechanism known as epimutation. Epimutations silence the drug target gene and are selected by drug exposure; the target gene is re-expressed and sensitivity is restored following passage without drug. This silencing process involves generation of small RNA (sRNA) against the target gene via core RNAi pathway proteins. To further elucidate the role of epimutation in the broad antifungal resistance of Mucor, epimutants were isolated that confer resistance to another antifungal agent, 5-fluoroorotic acid (5-FOA). We identified epimutant strains that exhibit resistance to 5-FOA without mutations in PyrF or PyrG, enzymes which convert 5-FOA into the active toxic form. Using sRNA hybridization as well as sRNA library analysis, we demonstrate that these epimutants harbor sRNA against either pyrF or pyrG, and further show that this sRNA is lost after reversion to drug sensitivity. We conclude that epimutation is a mechanism capable of targeting multiple genes, enabling Mucor to develop resistance to a variety of antifungal agents. Elucidation of the role of RNAi in epimutation affords a fuller understanding of mucormycosis. Furthermore, it improves our understanding of fungal pathogenesis and adaptation to stresses, including the evolution of drug resistance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Zanetta</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0002-5142-452X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Billmyre</LastName>
<ForeName>R Blake</ForeName>
<Initials>RB</Initials>
<Identifier Source="ORCID">0000-0003-4866-3711</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Soo Chan</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas, San Antonio, San Antonio, Texas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-6369-5995</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI104533</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI050113</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 AI039115</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007171</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>61H4T033E5</RegistryNumber>
<NameOfSubstance UI="D009963">Orotic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7IA9OUC93E</RegistryNumber>
<NameOfSubstance UI="C001242">5-fluoroorotic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.10</RegistryNumber>
<NameOfSubstance UI="D009962">Orotate Phosphoribosyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.23</RegistryNumber>
<NameOfSubstance UI="D009964">Orotidine-5'-Phosphate Decarboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>WM0HAQ4WNM</RegistryNumber>
<NameOfSubstance UI="D016559">Tacrolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026141" MajorTopicYN="N">Drug Resistance, Multiple, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="N">Epigenesis, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009089" MajorTopicYN="N">Mucor</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009091" MajorTopicYN="N">Mucormycosis</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009962" MajorTopicYN="N">Orotate Phosphoribosyltransferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009963" MajorTopicYN="N">Orotic Acid</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009964" MajorTopicYN="N">Orotidine-5'-Phosphate Decarboxylase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016559" MajorTopicYN="N">Tacrolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30742617</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1007957</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-18-01937</ArticleId>
<ArticleId IdType="pmc">PMC6386414</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1999 Sep 9;401(6749):157-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10490023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 2000 Apr 5;92(7):564-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10749912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Dec 28;107(7):905-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Jul 15;62(14):3925-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 13;297(5588):1833-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12193640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Aug 1;22(15):3983-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2003 Sep;47(9):2717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12936965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 May;36(5):497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2005 Sep 1;41(5):634-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16080086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1992 Jul 1;116(1):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1628845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Aug;61(4):1023-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16879651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Jun;44(6):504-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breast Cancer Res. 2008;10(1):R12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Sep 20;66(6):1279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1913809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2009 Jun 15;48(12):1743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19435437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Feb;47(2):81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19595784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2009 Sep 15;200(6):1002-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19659439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2010 Apr 15;50(8):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20218877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Sep;38(16):5535-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Nov 15;24(22):2566-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2011 Aug 4;118(5):1216-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21698218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J RNAi Gene Silencing. 2011;7:443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21769297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2012 Feb;54 Suppl 1:S23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Nov 16;63(4):751-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2225075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(8):e1002885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22916030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21010-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23197825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Apr;193(4):1163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23378067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Feb 28;152(5):957-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(9):e1003625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24039585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2013 Dec;21(6-7):561-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24173579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Jun 5;54(5):716-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24905005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Sep 25;513(7519):555-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25079329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2014 Nov;14(11):747-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Nov 27;5:5576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Apr 13;11(4):e1005168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25875805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Asian Pac J Cancer Prev. 2015;16(18):8067-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26745040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2016 Jul;16(7):828-837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26969258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Jun 20;26(12):1577-1584</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27238284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Jan 20;13(1):e1006150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28107502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Feb 24;355(6327):826-830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28183996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 Mar 24;13(3):e1006686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28339467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Jul 5;7(7):2047-2054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28476909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Sep 14;13(9):e1006468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28910393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 21;7(1):15898</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29162893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2018 May 22;9(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29789366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1984;197(2):345-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6394957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jun 17;15(12):3153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1996 Nov 30;348(9040):1523-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8942815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Jan;41(1):196-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jan 2;400(1):80-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9000517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Feb 19;391(6669):806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9486653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1998 Nov;260(2-3):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862479</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Missouri (État)</li>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Chang, Zanetta" sort="Chang, Zanetta" uniqKey="Chang Z" first="Zanetta" last="Chang">Zanetta Chang</name>
</region>
<name sortKey="Billmyre, R Blake" sort="Billmyre, R Blake" uniqKey="Billmyre R" first="R Blake" last="Billmyre">R Blake Billmyre</name>
<name sortKey="Billmyre, R Blake" sort="Billmyre, R Blake" uniqKey="Billmyre R" first="R Blake" last="Billmyre">R Blake Billmyre</name>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<name sortKey="Lee, Soo Chan" sort="Lee, Soo Chan" uniqKey="Lee S" first="Soo Chan" last="Lee">Soo Chan Lee</name>
<name sortKey="Lee, Soo Chan" sort="Lee, Soo Chan" uniqKey="Lee S" first="Soo Chan" last="Lee">Soo Chan Lee</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000377 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000377 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30742617
   |texte=   Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30742617" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020